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Abstract 

In this paper, we consider the numerical solution of two point boundary value 
problems by using collocation method with quartic and quintic splines as the 
approximating function. A symptomatic bound on the maximum error shows that 
in certain cases, the quintic spline can give higher accuracy by a factor of between 
one and two compared with the quartic spline case. Numerical tests support the 
theoretical results. 
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1. Introduction 

Consider the general, variable coefficient, second order boundary 
value problem given by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ),, tutftutrtutqtutptLu =+′+′′=   (1) 

with the boundary conditions 

( ) ( ) ,010 == uu   (2) 

some Russian authors, who used ordinary polynomials for approximating 
solutions [18] have obtained collocation methods for such problem. More, 
spline functions were introduced with more desirable results [2, 7, 11, 17]. 
Ahlberg and Ito [1] introduce another equation of the method, especially, 
in the treatment of boundary conditions for the approximation splines. 
And the also described for immediate application; shooting methods are 
discussed by Henrici [9] and Roberts and Shipman [14]; for instance, the 
problem is solved by using variation techniques in Burden [8]; and 
commonly used finite difference methods are discussed by many authors. 
Khalifa and Eilbeck [10] used cubic and quadratic splines for the same 
problem. Al-Said [3, 4] has demonstrated the use of quadratic spline for 
obtaining smooth approximations for the solution, and its first derivative 
of second order obstacle problems and of two point boundary value 
problems. The use of higher order spline functions and collocation 
methods with splines as basis functions for solving various second order 
boundary value problems were demonstrated by different authors [1, 5, 6, 
10, 12, 13, 15, 16, 19, 20]. The purpose of this paper shows on theoretical 
and experimental grounds that splines of odd degree can give better 
results in certain cases. Specifically, we concentrate on a detail 
comparison of collocation method with quartic and quintic splines. By 
obtaining asymptotic error bounds, we show that the quintic spline gives 
a higher accuracy by a factor of between one and two than quartic spline. 
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2. Error Bounds on Interpolator Splines  
and their Derivatives 

Consider an arbitrary function ( ) ( ),1,06Ctf ∈  if we use quartic and 
quintic, then the bounds of error are 

( ) ( )
( ) ( )








+

+
≤′′−′′

ntic,qui,96
1

quartic,,400
7

664

664

hOfh

hOfh
uf

c
 (3) 

as a numerical example, we take ( ) ( ),sin ttf π=  find u  the quartic 
(quintic) spline of interpolation to the solution for various values of h, the 
results are shown in Table 1. 

Table 1. 
c

uf ′′−′′  when ( ) ( )ttf π= sin  

Quintic Quartic 
h 

Numerical Theory Numerical Theory 

0.2 1.3E-6 1.6E-2 1.3E-6 2.6E-2 

0.1 7.6E-6 1.0E-3 5.7E-6 1.6E-3 

0.05 1.8E-5 6.2E-5 2.8E-5 1.0E-4 

0.04 2.8E-5 2.5E-5 4.0E-5 4.3E-5 

the fact that the quintic spline provides a better approximation of f ′′  at 

knots collocation points than the quartic spline at mid knots collocation 

points. Now, we also need bounds ,
c

uf ′−′  the maximum norm for the 

first derivatives over the collocation points can be obtained in a similar 
way to those for the second derivatives 

( ) ( )
( ) ( )
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we can obtain a bound on 
c

uf −  in quartic and quintic cases by 

expanding in a Taylor series about each collocation point, we get 
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( ) ( )
( )
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3. Collocation for Two Point Boundary  
Value Problem 

In this section, we follow closely the approach of [1] for quintic 
splines. Details are given only of the calculation in the quartic spline case. 
We define ( )tu~  be the collocating approximate solution in the form 

( ) ( ),~
1

2
tBctu ii

N

i
∑
+

−=

=  (6) 

where ( )tBi  is the basis function. Then, we get the scheme 

[ ] [ ]211221122 222284104
4

++−−++−− ++−−+++−+ iiii
i

iiiii
i cccch

qccccc
h
p  

[ ] ( ) .10,762307616 2112 Nifcccccr
iiiiii

i ==+++++ ++−−  (7) 

Collecting these equations, we obtain a matrix equation for unknown 
coefficient c’s of the form 

( ),cfAc =   (8) 

where A is an ( ) ( )44 +×+ NN  matrix and c is an ( )-4+N  dimensional 

vector with components .ic  Following a similar calculation to [10], it is 
straightforward to show that A is diagonally dominant, if h is sufficiently 
small and 

( ) ( ) ( ),1,0,0 ∈< ttrtp  (9) 

since 
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
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><<
<>>−
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rpr

 (10) 

In this case, the maximum norm of the inverse matrix 1−A  satisfies the 
following inequality 

( ) ,min24
11

c
ixrA λ=≤

∞
−  (11) 

where suffix c means related to the collocation points, then Equation (8) 
can be written as 

( ).1 cfAc −=   (12) 

4. Error Estimates 

We discuss the error in detail and also give an explicit formula for the 
leading term in the error, when both quartic and quintic splines are used. 
Let ( )tu  be the quartic spline of interpolation to the unique solution of 

Equations (1) and (2), then 

( ) ( ),
1

2
tBctu ii

N

i
∑
+

−=

=  (13) 

using the linear differential operator L in (1), we get 

( ) ( ) ( ) ( ),uuruuquupuuL −+′−′+′′−′′=−   (14) 

at the collocation points, thus, 

,uuquupuLLu c ′−′+′′−′′≤− ∞∞  (15) 

the right hand side of (15) depends on two the norms and from the results 
given in Section (2), we get 
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we can say that the second terms are relatively small so suppose that 
( ) ,0=tq  so that 

( ) ( ),664 hOuphauLLu c +≤− ∞   (17) 

where           


=

ntic.qui,010416666.0
quartic,,0175.0

a  

 If ( )tg  represents the error function, so that 

,iii LuuLg −=   (18) 

where ig  is the value of ( )tg  at a collocation points, then 

( ) ( ),664 hOuphag c +≤ ∞  (19) 

the important step in our discussion is to get an estimate for cuu ~−  by 

using this inequality 

,~~ uuuuuu −+−≤−   (20) 

( ) ( ) ( ) ,~,,~ guzfuzfuuL iiiiii +−=−   (21) 

where iz  represent the collocation points. Let GA  be a square matrix 

representing the matrices given by quintic or quartic splines, then 

( ) ,~ eAuuL Gii =−   (22) 

thus from (21) and (22), we get 

,ν+= geAG   (23) 

where ( ) ( ),~,, uzfuzf −=ν  so ( ) ( ) ,11 ν−− += GG AgAe  and 

( ) ( ) .11
cGcGc AgAe ν−− +<  (24) 

Assuming that ( )utf ,  is Lipschitz condition in u 

( ) ( ) ,,, 2121 uuMutfutf −<−   (25) 
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then 

( )( ) ( )( ) ,~max~,,max 2 ciiiiiiic eBRuulzuzfzuzf ≤−≤−=ν  

(26) 

where ,max2 ilR =  then we get ( ) ( ) 1
2

1 −
∞

− +≤ GcGc ARgAe  

.ceB  Now, let 
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by substituting from (19) in (27), we get 
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where                ( )
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if h is sufficiently small, we can consider the term irmin  to be almost 
the same, and also let us denote this term by [ ],r  so (28) can be written 
as 

[ ]( )
( ) ( ),664

21
hOuhpRrR

ae c +
−

≤  (29) 

then we get the following relation 

[ ]
( ) ( ),~ 664

2
hOuhpRr

auu c +
−

≤−  (30) 

this relation gives the general formula for the leading term in the 
approximate solution, in practice, the error may be better than this 
estimate. For the linear case, when f is to be a function of t only, the 
constant .02 =R  From this result, we can state the following theorem. 



K. R. RASLAN et al. 294

Theorem. Let the two point boundary value problems (TPBVP) of the 
form (1), (2), where the coefficient functions ( )tp  and ( )tr  and the forcing 

function ( )utf ,  satisfy the conditions ( ) ( ) ,0<trtp  for all t and (25). Let 

( )tu~  be the quartic (quintic) spline, if the true solution ( )tu  of TPBVP 

satisfies ( ),1,06Cu ∈  then 

[ ]
( ) ( ).~ 664

2
hOuhpRr

auu c +
−

≤−  

It is clear from this theorem that the upper bound on the maximum norm 
is less in the quintic spline. 

5. Numerical Results 

In this section, the results of some numerical example is shown. The 
problem [1, 10] ( ) ( ) ,0100 =−′′ tutu  with the boundary conditions ( ) =0u  

( ) ,01 =u  which has the exact solution given by ( ) ( ) cosh/510cosh −= ttu  

( ).5  The errors for both the quintic and quartic are shown in Table 2. 

Table 2. Errors theory and numerical 

Quintic Quartic 
N 

-2L error Max error Theory error -2L error Max error Theory error 

5 0.773326E-3 0.119537E-2 0.106667E-2 0.167295E-2 0.213557E-2 0.179200E-2 

10 0.984635E-4 0.144729E-3 0.666667E-4 0.231102E-3 0.391601E-3 0.112000E-3 

15 0.238474E-4 0.403387E-4 0.131687E-4 0.570999E-4 0.982698E-4 0.221235E-4 

20 0.824613E-5 0.137709E-4 0.416667E-5 0.200101E-4 0.324316E-4 0.700000E-5 

25 0.358215E-5 0.583322E-5 0.170667E-5 0.874830E-5 0.141851E-4 0.286720E-5 

6. Discussion 

In this paper, we have shown that the method using quintic spline is 
superior to the method using quartic spline by a factor in the maximum 
error between one and two. Khalifa and Eilbeck conjectured that their 
results would generalized to two point boundary value problems spline of 
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even degree will be superior to spline of odd degree in the collocation 
method with equally spaced points. But, we prove that from our 
theoretical and numerical results, quintic spline is superior to the method 
using quartic spline. So, we can not generalized the results for all degrees 
even and odd. 
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